Basigin Promotes Cardiac Fibrosis and Failure in Response to Chronic Pressure Overload in Mice.

نویسندگان

  • Kota Suzuki
  • Kimio Satoh
  • Shohei Ikeda
  • Shinichiro Sunamura
  • Tomohiro Otsuki
  • Taijyu Satoh
  • Nobuhiro Kikuchi
  • Junichi Omura
  • Ryo Kurosawa
  • Masamichi Nogi
  • Kazuhiko Numano
  • Koichiro Sugimura
  • Tatsuo Aoki
  • Shunsuke Tatebe
  • Satoshi Miyata
  • Rupak Mukherjee
  • Francis G Spinale
  • Kenji Kadomatsu
  • Hiroaki Shimokawa
چکیده

OBJECTIVE Basigin (Bsg) is a transmembrane glycoprotein that activates matrix metalloproteinases and promotes inflammation. However, the role of Bsg in the pathogenesis of cardiac hypertrophy and failure remains to be elucidated. We examined the role of Bsg in cardiac hypertrophy and failure in mice and humans. APPROACH AND RESULTS We performed transverse aortic constriction in Bsg(+/-) and in wild-type mice. Bsg(+/-) mice showed significantly less heart and lung weight and cardiac interstitial fibrosis compared with littermate controls after transverse aortic constriction. Both matrix metalloproteinase activities and oxidative stress in loaded left ventricle were significantly less in Bsg(+/-) mice compared with controls. Echocardiography showed that Bsg(+/-) mice showed less hypertrophy, less left ventricular dilatation, and preserved left ventricular fractional shortening compared with littermate controls after transverse aortic constriction. Consistently, Bsg(+/-) mice showed a significantly improved long-term survival after transverse aortic constriction compared with Bsg(+/+) mice, regardless of the source of bone marrow (Bsg(+/+) or Bsg(+/-)). Conversely, cardiac-specific Bsg-overexpressing mice showed significantly poor survival compared with littermate controls. Next, we isolated cardiac fibroblasts and examined their responses to angiotensin II or mechanical stretch. Both stimuli significantly increased Bsg expression, cytokines/chemokines secretion, and extracellular signal-regulated kinase/Akt/JNK activities in Bsg(+/+) cardiac fibroblasts, all of which were significantly less in Bsg(+/-) cardiac fibroblasts. Consistently, extracellular and intracellular Bsg significantly promoted cardiac fibroblast proliferation. Finally, serum levels of Bsg were significantly elevated in patients with heart failure and predicted poor prognosis. CONCLUSIONS These results indicate the crucial roles of intracellular and extracellular Bsg in the pathogenesis of cardiac hypertrophy, fibrosis, and failure in mice and humans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adult Cardiac Expression of the Activating Transcription Factor 3, ATF3, Promotes Ventricular Hypertrophy

Cardiac hypertrophy is an adaptive response to various mechanophysical and pathophysiological stresses. However, when chronic stress is sustained, the beneficial response turns into a maladaptive process that eventually leads to heart failure. Although major advances in the treatment of patients have reduced mortality, there is a dire need for novel treatments for cardiac hypertrophy. According...

متن کامل

ATF3-dependent cross-talk between cardiomyocytes and macrophages promotes cardiac maladaptive remodeling.

RATIONALE Pressure overload induces adaptive remodeling processes in the heart. However, when pressure overload persists, adaptive changes turn into maladaptive alterations leading to cardiac hypertrophy and heart failure. ATF3 is a stress inducible transcription factor that is transiently expressed following neuroendocrine stimulation. However, its role in chronic pressure overload dependent c...

متن کامل

Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload.

Fibroblasts, which are the most numerous cell type in the heart, interact with cardiomyocytes in vitro and affect their function; however, they are considered to play a secondary role in cardiac hypertrophy and failure. Here we have shown that cardiac fibroblasts are essential for the protective and hypertrophic myocardial responses to pressure overload in vivo in mice. Haploinsufficiency of th...

متن کامل

Heart Ablation of Mineralocorticoid Receptors in Myocytes But Not in Fibroblasts Preserves Cardiac Function

Antagonists of the mineralocorticoid receptor improve morbidity and mortality in patients with severe heart failure. However, the cell types involved in these beneficial effects are only partially known. The aim of this work was to evaluate whether genetic deletion of mineralocorticoid receptors in mouse cardiomyocytes or fibroblasts in vivo is cardioprotective after chronic left ventricular pr...

متن کامل

Ablation of mineralocorticoid receptors in myocytes but not in fibroblasts preserves cardiac function.

Antagonists of the mineralocorticoid receptor improve morbidity and mortality in patients with severe heart failure. However, the cell types involved in these beneficial effects are only partially known. The aim of this work was to evaluate whether genetic deletion of mineralocorticoid receptors in mouse cardiomyocytes or fibroblasts in vivo is cardioprotective after chronic left ventricular pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 36 4  شماره 

صفحات  -

تاریخ انتشار 2016